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Abstract

Heuristic measures for estimating the quality of
attributes mostly assume the independence of at-
tributes so in domains with strong dependencies
between attributes their performance is poor. Re-
lief and its extension ReliefF are capable of cor-
rectly estimating the quality of attributes in clas-
sification problems with strong dependencies be-
tween attributes. By exploiting local informa-
tion provided by different contexts they provide
a global view. We present the analysis of Reli-
efF which lead us to its adaptation to regression
(continuous class) problems. The experiments on
artificial and real-world data sets show that Re-
gressional ReliefF correctly estimates the qual-
ity of attributes in various conditions, and can be
used for non-myopic learning of the regression
trees. Regressional ReliefF and ReliefF provide
a unified view on estimating the attribute quality
in regression and classification.

1 Introduction

The majority of current propositional inductive learning
systems predict discrete class. They can also solve the
regression (also called continuous class) problems by dis-
cretizing the prediction (class) in advance. This approach
is often inappropriate. Regression learning systems (also
called function learning systems), e.g., CART (Breiman
et al., 1984), Retis (Karali¢, 1992), M5 (Quinlan, 1993),
directly predict continuous value.

The problem of estimating the quality of attributes seems to
be an important issue in both classification and regression
and in machine learning in general (e.g., feature selection,
constructive induction). Heuristic measures for estimating
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the attribute’s quality mostly assume the independence of
attributes, e.g., information gain (Hunt et al., 1966), Gini
index (Breiman et al., 1984), distance measure (Mantaras,
1989), and j-measure (Smyth and Goodman, 1990) for dis-
crete class and the mean squared and the mean absolute
error (Breiman et al., 1984) for regression. They are there-
fore less appropriate in domains with strong dependencies
between attributes.

Relief (Kira and Rendell, 1992) and its extension ReliefF
(Kononenko, 1994) are aware of the contextual informa-
tion and can correctly estimate the quality of attributes in
classification problems with strong dependencies between
attributes.  Similar approaches are the contextual merit
(Hong, 1994) and the geometrical approach (Elomaa and
Ukkonen, 1994). We present the analysis of ReliefF which
lead us to adapt it to regression problems.

Several other researchers have investigated the use of local
information and profited from being aware of it (Domingos,
1997; Atkeson et al., 1996; Friedman, 1994). The approach
described in this paper is not directly comparable to theirs
and provides a different perspective.

Relief has commonly been viewed as a feature selection
method that is applied in a prepossessing step before the
model is learned, however it has recently also been used
during the learning process to select splits in the building
phase of decision tree (Kononenko et al., 1997). We exper-
imented also with similar use in regression trees.

In the next Section we present and analyze the novel RRe-
liefF (Regressional ReliefF) algorithm for estimating the
quality of attributes in regression problems. Section 3 de-
scribes experiments with estimation of attributes under var-
ious conditions, and Section 4 describes our use of RReli-
efF in learning of regression trees. The last Section sum-
marizes and gives guidelines for further work.



Algorithm Relief

Input: for each training instance a vector of attribute values and the class value
Output: the vector W of estimations of the qualities of attributes

1. setall weights W[A] :=0.0;
2. fori:=1tomdo begin
3. randomly select an instance R;

Figure 1: The basic Relief algorithm

4, find nearest hit H and nearest miss M;
5. for A := 1 to #all_attributes do
6. WIA] := W[A] - diff(A,R,H)/m + diff(A,R,M)/m;
7. end;
2 RRdiefF

2.1 Relief and ReliefF for classification

The key idea of the original Relief algorithm (Kira and
Rendell, 1992), given in Figure 1, is to estimate the quality
of attributes according to how well their values distinguish
between the instances that are near to each other. For that
purpose, given a randomly selected instance R (line 3), Re-
lief searches for its two nearest neighbors: one from the
same class, called nearest hit H, and the other from a dif-
ferent class, called nearest miss M (line 4). It updates the
quality estimation W[A] for all the attributes A depending
on their values for R, M, and H (lines 5 and 6). The process
is repeated for m times, where m is a user-defined param-
eter.

Function di f f (Attribute, Instancel, Instance2) calcu-
lates the difference between the values of Attribute for two
instances. For discrete attributes it is defined as:

) [ 0 ;value(A, I) = value(A, I)
dif f(4, 1, I,) = { 1 ;otherwise
1)
and for continuous attributes as:
_ |value(A, I) —value(A, I)|

diff(A, I, L) = maz(A) — min(A) @

The function di f f is used also for calculating the distance
between instances to find the nearest neighbors. The total
distance is simply the sum of distances over all attributes.
Relief’s estimate W[A] of the quality of attribute A is an
approximation of the following difference of probabilities
(Kononenko, 1994):

WI[A] =
P(diff. value of A|nearest inst. from diff. class)

— P(diff. value of A|nearest inst. from same class) (3)

The complexity of Relief for n training instances and A
attributes is O(m x n x A). The original Relief can deal
with discrete and continuous attributes. However, it can not
deal with incomplete data and is limited to two-class prob-
lems. Kononenko (1994) has shown that Relief’s estimates
are strongly related to impurity functions and developed an
extension called ReliefF that is more robust, can tolerate in-
complete and noisy data and can manage multiclass prob-
lems. One difference from original Relief, interesting also
for regression, is that, instead of one nearest hit and one
nearest miss, ReliefF uses & nearest hits and misses and
averages their contribution to W[A].

The power of Relief is its ability to exploit information lo-
cally, taking the context into account, but still to provide
the global view.

2.2 RReliefF for regression

In regression problems the predicted value (class) is con-
tinuous, therefore the (nearest) hits and misses cannot be
used. Instead of requiring the exact knowledge of whether
two instances belong to the same class or not, we can intro-
duce a kind of probability that the predicted values of two
instances are different. This probability can be modeled
with the relative distance between the predicted (class) val-
ues of the two instances.

Still, to estimate W[A] in (3), the information about the
sign of each contributed term is missing. In the follow-
ing derivation we reformulate (3), so that it can be directly
evaluated using the probability of the predicted values of
two instances being different. If we rewrite

Pyissa = P(diff. value of A|nearest instances) (4)

Pyisrc = P(different prediction|nearest instances)

®)



and
Pyissciaissa = P(different prediction|

|different value of A and nearest instances)  (6)
we obtain from (3) using Bayes rule:

(1 — Puaissciaissa)Paissa
1— Pyssc
@)

Therefore, we can estimate W[A] by approximating terms
defined by Equations 4, 5 and 6. This can be done by
the algorithm on Figure 2. The weights for different pre-
diction (class), different attribute, and different prediction
& different attribute are collected in Ngc, Nga[A], and
Nacgaa[A], respectively. The final estimation of each at-
tribute W[A] (Equation 7) is computed in lines 14 and 15.

PaissoiagissaPaifra

WAl = Pyifsc

Term d(4, 7) in Figure 2 (lines 6, 8 and 10) is used to take
into account the distance between the two instances R; and
I;. Closer instances should have greater influence, so we
exponentially decreased the influence of instance I; with
the distance from the given instance R;:

d(i, j) = 226

=S iy M ©

_ (rank(Ri,Ij))Q
dl (7/5 .7) =€ ’
where rank(R;, I;) is the rank of instance I; in a sequence
of instances ordered by the distance from R; and o is a user
defined parameter. We also experimented using the con-
stant influence of all £ nearest instances I; around instance
R; by taking di(i,j) = 1/k, but the results did not dif-
fer significantly. Since we consider the former to be more
general we have chosen it for this presentation.

Note that the time complexity of RReliefF is the same as
that of original Relief, i.e., O(m x n x A). The most
complex operation within the main for loop is the selec-
tion of k nearest instances I;. For it we have to compute
the distances from I; to R, which can be done in O(n x A)
steps for n instances. This is the most complex operation.
O(n) is needed to build a heap, from which & nearest in-
stances are extracted in O(klogn) steps, but this is less
than O(n x A).

3 Estimatingthe attributes

In this Section we examine the ability of RReliefF to rec-
ognize and rank important attributes and in the next Section
we use these abilities in learning regression trees.

We compare the estimates of RReliefF with the mean
squared error (MSE) as a measure of the attribute’s quality

(Breiman et al., 1984). This measure is standard in regres-
sion tree systems. By this criterion the best attribute is the
one which minimizes the equation:

MSE(A) = pr, - s(tr) + pr - s(tr), ©)

where t;, and tg are the subsets of cases that go left and
right, respectively, by the split based on A, and py, and pg
are the proportions of cases that go left and right. s(t) is
the standard deviation of the predicted values ¢; of cases in
the subset ¢ :

1 N(t) o
s(t) = N—@Z(Cz"c(t))Q- (10)

The minimum of (9) among all possible splits for an at-
tribute is considered its quality estimate and is given in the
results below.

We have used several families of artificial data sets to check
the behavior of RReliefF in different circumstances.

FRACTION: each domain contains continuous attributes
with values from 0 to 1. The predicted value is the
fractional part of the sum of I important attributes:
C = Y14 — |Xj—1 A;]. These domains are
floating point generalizations of parity concept of or-
der I, i.e., domains with highly dependent pure con-
tinuous attributes.

MODULO-8: domains are described by a set of attributes,
value of each attribute is an integer value in the range
0-7. Half of the attributes are treated as discrete and
half as continuous; each continuous attribute is exact
match of one of the discrete attributes. The predicted
value is the sum of the I important attributes by mod-
ulo 8; C = (Zf:j A;) mod 8. These domains are
integer generalizations of parity concept (which is the
sum by modulo 2) of order I. They shall show how
well RReliefF recognizes highly dependent attributes
and how it ranks discrete and continuous attributes of
equal importance.

PARITY: each domain consists of discrete, Boolean at-
tributes. The I informative attributes define parity
concept: if their parity bit is 0, the predicted value is
set to a random number between 0 and 0.5, otherwise
it is randomly chosen to be between 0.5 and 1.

I

rand(0,0.5) ; () Aj)mod2 =0
C= T
rand(0.5,1) ; (X Aj)mod2=1

j=1



Algorithm RReliefF

Input: for each training instance a vector of attribute values x and the predicted value 7(x)
Output: the vector W of estimations of the qualities of attributes

1. set a”Ndc,NdA[A],Ndc&dA[A], W[A] to 0;
2. fori:=1tomdo begin
3. randomly select instance R;;

4 select k instances I; nearest to R;;
5 for j := 1 to k do begin
6. Nac = Nac + | f(R) — £(I;)] - d(i, 5);
7. for A :=1 to #all attributes do begin
8 Nga[A] := Naa[A] + dif f(A, Ri, I}) - d(i, j);
9. NacgaalA] = NacgaalA] + |f(R:) — f(I;)]-
10. dif f(A,R;, I;) - d(i, §);
11. end;
12. end;
13. end;

14. for A :=1 to #all_attributes do

15. WIA] := Ngcgaa[Al/Nac - (Naa[A] — NacgaalA])/(m — Nyc);

Figure 2: Pseudo code of RReliefF (Regressional ReliefF)

These concepts present blurred versions of the parity
concept (of order I). They shall test the behavior of
RReliefF on discrete attributes.

LINEAR: the domain is described by continuous at-
tributes with values chosen randomly between 0 and
1; the predicted value is computed by the following
linear formula: C = A1 —2A5+3A43—3A4. We have
included this domain to compare the performance of
RReliefF with that of the MSE, which is known to rec-
ognize linear dependencies.

COSINUS: this domain has continuous attributes with
values from 0 to 1; the prediction is computed as fol-
lows: C' = (—2A4, + 3A43) cos (4mA;). It shall show
the ability of the heuristics to handle non-linear de-
pendencies.

In experiments below we have used I = {2, 3, 4} important
attributes. Each of the domains has also some irrelevant
(random) attributes with values in the same range as the
important attributes.

For each domain we have generated NV examples and com-
puted the estimates as the average of 10-fold cross valida-
tion. With this we collected enough data to eliminate any
probabilistic effect caused by the random selection of in-
stances in RReliefF. We also evaluated the significance of
differences between the estimates with paired t-test (at 0.05
level).

In all experiments RReliefF was run with the same default
set of parameters (constant mn in main loop = 250, k-nearest
=200, o = 20 (see (8))).

3.1 Varying the number of examples

First we investigated how the number of the available ex-
amples influences the estimates. We have generated do-
mains with I = {2,3,4} important attributes and added
them R = 10 — I random attributes with values in the
same range, so that the total number of the attributes was 10
(LINEAR and COSINUS have I fixed to 4 and 3, respec-
tively). We cross-validated the estimates of the attributes in
altogether 11 data sets, varying the size of the data set from
10 to 1000 in steps of 10 examples.

Figure 3 shows the dependence for FRACTION domain
with I = 2 important attributes. Note that RReliefF gives
higher scores to better attributes, while MSE does the op-
posite. On the tope we can see that with small number of
examples (below 50) a random attribute with the highest
estimate (best random) is estimated as better than the two
important attributes (11 and 12). Increasing the number of
the examples to 100 was enough that the estimates of the
important attributes were significantly better than the esti-
mate of the best random attribute. The bottom of Figure
3 shows that MSE is incapable of distinguishing between
important and random attributes. Since there are 8 random
attributes the one with the lowest estimate is mostly esti-
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Figure 3: Varying the number of examples in FRACTION
domain with 2 important and 8 random attributes. Note that
RReliefF gives higher scores to better attributes, while the
MSE does the opposite.

mated as better than 11 and 12.

The behaviors of RReliefF and MSE are similar on other
FRACTION, MODULO and PARITY data sets. Due to
the lack of space we will omit other graphs and will only
comment the summary of the results presented in the Ta-
ble 1. The two numbers given are the limiting number of
examples that were needed that the estimates of the im-
portant attributes which were estimated as the worst (7,,)
and the best (I;) between important attributes were signif-
icantly better than the estimates of the attribute that was
estimated as the best between the random attributes. The
’-” sign means that the estimator did not succeed to signifi-
cantly distinguish between the two groups of the attributes.

We can observe that the number of the examples needed
is increasing with the increasing complexity (number of
important attributes) of each problem. While the PAR-
ITY, FRACTION and MODULO-8 are solvable for RRe-
liefF, MSE is completely lost there. MODULO-8-4 (with
4 important attributes) is too difficult even for RReliefF. It
seems that 1000 examples is not enough for a problem of
such complexity, namely the complexity grows exponen-
tially here: the number of peaks in the instance space for
MODULO-m-p domain is mP”. This was confirmed by an
additional experiment with 8000 examples where RReliefF
succeeded to separate the two groups of examples.

Table 1: Results of varying the number of the examples.
Numbers present the number of examples required to en-
sure that relevant attributes are ranked significantly higher
than irrelevant attributes.

RReliefF MSE
domain | I, I, L, I
2 | 100 100 | - -
FRACTION 3 |300 220 | - -
4 | 950 690 | - -
2+2 | 80 70 - -
MODULO-8 3+3 | 370 230 | - -
4+4 | - - } -
2 50 50 - -
PARITY 3 | 100 100 | - -
4 |280 220 - -
LINEAR 4 - 10 | 340 20
COSINUS 3 - 50 | 490 90

Also interesting in the MODULO problem is that the im-
portant discrete attributes are considered better than their
continuous counterparts. We can understand this if we
consider the behavior of dif f function (see (1) and (2)).
Let’s take two cases with 2 and 5 being their values of
attribute A4;, respectively. If A; is the discrete attribute,
the value of dif f(A;,2,5) = 1, since the two categori-
cal values are different. If A; is the continuous attribute,
dif f(A;,2,5) = 2281 % 0.43. So, with this form of dif
function continuous attributes are underestimated. We can
overcome this problem with the ramp function as proposed
by (Hong, 1994). It can be defined as a generalization of
dif f function for the continuous attributes:

0 sd < teg
dif f(A,I,L)=¢ 1 s 3d > taipy
tdiff—e;eq ;teq<d5tdiff

(11)
where d = |value(A, I) — value(A, I)| presents the dis-
tance between the attribute values of the two instances, and
teq and ¢4 are two user definable threshold values; t.,
is the maximum distance between the two attribute values
to still consider them equal, and t4;¢ ¢ is the minimum dis-
tance between attribute values to still consider them differ-
ent. We have omitted the use of the ramp function from this
presentation, as it complicates the basic idea, but the tests
with sensible default thresholds have shown that continu-
ous attributes are no longer underestimated.

The results for LINEAR and COSINUS domains show that
separating the worst important attribute (4; and A,, re-
spectively) from the best random attribute is not easy nei-
ther for RReliefF nor for MSE, but MSE was better. RRe-
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Figure 4: RReliefF’s estimates when the noise is added to
the predicted value. in FRACTION domain with 2 impor-
tant attributes.

liefF could distinguish the two attributes significantly with
more than 100 examples, but occasionally some peak in
the estimation of the random attributes caused the t-value
to fall below the significance threshold. MSE could also
mostly distinguish the two groups, but lower variation gives
it a slight advantage. When separating the best important
attribute from random attributes, both RReliefF and MSE
were successful but RReliefF needed less examples. This
probably compensates the negative result for RReliefF with
the worst important attribute (e.g., in the regression tree
learning a single best attribute is selected in each node).
The difference between the estimators is also in ranking the
attributes by importance in COSINUS domain. The correct
decreasing order replicated by RReliefF is A;, A3, A5 ,
while MSE orders them: Az, As, A;, as it is unable to de-
tect non-linear dependencies.

LINEAR and COSINUS domains show that on relatively
simple relations the performance of RReliefF and MSE are
comparable.

We have also tested other types of non-linear dependen-
cies between the attributes (logarithmic, exponential, poly-
nomial, trigonometric, ...) and RReliefF has been always
superior to MSE.

3.2 Adding noise by changing the predicted value

We checked the robustness of RReliefF to noise by using
the same setting as before (data sets with I = {2,3,4}
important attributes, altogether 10 attributes), but with the
number of examples fixed to 1000. We added noise to the
data sets by changing certain percent of predicted values to
a random value in the same range as the correct values. We
were varying the noise from 0 to 100%.

The Figure 4 shows the dependence for FRACTION do-
main with I = 2 important attributes.

We can see that RReliefF is robust, as it can significantly
distinguish the worst important attribute from the best ran-
dom even with 50 % of corrupted prediction values. The
Table 2 summarizes the results for all the domains. The two
columns give the maximal percentage of corrupted predic-
tion values where the estimates of the worst important (I,,)
and the best important attribute (1), respectively, were still
significantly better than the estimates of the best random
attribute. The ’-’ sign means that the estimator did not suc-
ceed to significantly distinguish between the two groups
even without any noise.

Table 2: Results of adding noise to predicted values. Num-
bers tell us which percent of predicted values could we cor-
rupt still to get significant differences in estimations.

RReliefF MSE
domain | L, I, I, I
2 |53 59| - -
FRACTION 3 |16 35| - -
4 3 14| - -
2+2 | 64 75 | - -
MODULO-8 3+3 |52 70 | - -
4+4 | - - -
2 |66 70 | - -
PARITY 3 |60 71| - -
4 |50 67| - -
LINEAR 4 - 66 |50 85
COSINUS 3 - 46 | 36 63

3.3 Adding more random attributes

RReliefF is unlike MSE sensitive to random attributes. We
tested this sensitivity with similar settings as before (data
sets with I = {2, 3,4} important attributes, the number of
examples fixed to 1000), and added from 1 to 200 random
attributes.

The Figure 5 shows the dependence for FRACTION do-
main with I = 2 important attributes. We can see that
RReliefF is quite tolerant to this kind of noise as even 70
random attributes does not prevent it to assign significantly
different estimates to the worst informative and the best
random attribute.

Table 3 summarizes the results. Since MSE estimates each
attribute separately from the others it is not sensitive to this
kind of noise and we did not include it into this experi-
ment. The two columns give the maximal number of ran-
dom attributes that could be added before the estimates of
the worst (I,,) and the best important attribute (1), respec-
tively, were no more significantly better than the estimates
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Figure 5: RReliefF’s estimates when random attributes are
added in FRACTION domain with 2 important attributes.

Table 3: Results of adding random attributes. Numbers
tell us how many random attributes could we add still to
significantly differentiate the worst and the best important
attribute from the best random attribute

domain | Iworst Ibest
2 70 80
FRACTION 3 10 20
4 4 5
2+2 | 50+50 100+100
MODULO-8 3+3 | 7+7 20+20
444 | - -
2 >200 > 200
PARITY 3 50 70
4 10 20
LINEAR 4 - >200
COSINUS 3 - >200

of the best random attribute. The ’-” sign means that the es-
timator did not succeed to significantly distinguish between
the two groups even with a single random attribute.

4 Building regression trees

We have developed a learning system which builds binary
regression and model trees (as named by (Quinlan, 1993))
by recursively splitting training examples based on the val-
ues of attributes. The attribute in each node is selected ac-
cording to the estimates of the attributes’ quality by RRe-
liefF or by MSE (9). These estimates are computed on the
subset of the examples that reach current node. Such use
of ReliefF on classification problems was shown to be sen-
sible and can significantly outperform impurity measures
(Kononenko et al., 1997).

We have run our system with two sets of parameters and
procedures. They are named according to the type of mod-

els used in the leaves.

Point mode is similar to CART (Breiman et al., 1984)
and uses the average prediction (class) value of the
examples in each leaf node as the predictor. Instead
of cost complexity pruning of CART which demands
the cross validation or separate set of examples for
setting its complexity parameter we were using the
Retis” pruning with m-estimate of probability (Kar-
ali¢, 1992) which produces comparable or better re-
sults.

Linear mode is similar to M5 (Quinlan, 1993), and uses
pruned linear models in each leaf node as the predic-
tor. We were using the same procedures for pruning
and smoothing of the trees as M5.

The trees with linear models offer greater expressive power
and mostly perform better on real world problems which
often contain some form of near linear dependency (Kar-
ali¢, 1992; Quinlan, 1993). The problem of overfitting the
data is relieved by the pruning procedure employed in M5
which can reduce the linear formula to the constant term if
there is not enough evidential support for it.

Each of the modes uses the same default set of parameters
for growing and pruning of the tree. We used two stopping
criteria, namely the minimal number of cases in the leaf
(5) or the minimal purity of a leaf (proportion of the root’s
standard deviation (s) in the leaf = 8%).

We ran our system on the artificial data sets and on do-
mains with continuous prediction value from UCI (Murphy
and Aha, 1995). Artificial data sets were used as described
above (11 data sets, each consisting of 10 attributes - 2, 3
or 4 important, the rest are random, and containing 1000
examples). For each domain we collected the results as the
average of 10 fold cross-validation. We present results in
Table 4.

We compare the relative mean squared error of the predic-
tors ¢:

REy(¢) = ), where Ry(7) = 1
t “

(12)
The 4" example is written as the ordered pair (c;, z;),
where z; is the vector of attribute values. 7(z;) is the value
predicted by 7, and p is a predictor which always returns
the mean value of the prediction values. Sensible predictors
have RE(¢) < 1.

Besides the error we included also the measure of com-
plexity C of the tree. C is the number of all the occur-
rences of all the attributes anywhere in the tree plus the



Table 4: Relative error and complexity of the regression and model trees with RReliefF and MSE as the estimators of the
quality of the attributes.

linear point
RReliefF MSE RReliefF MSE
domain RE C | RE C|S| RE C | RE C|S
Fraction-2 34 112 | 86 268 | + 5287|117 160 | +
Fraction-3 73 285|108 440 | + || 1.05 174|162 240 | +
Fraction-4 1.05 387|110 392 |0 | 151 250|165 219 |0
Modulo-8-2 | .22 98| .77 329 | + .06 58| .81 195 | +
Modulo-8-3 | .58 345 | 1.08 436 | + 59 166 | 1.58 251 | +
Modulo-8-4 | 1.05 380 | 1.07 439 | 0 || 1.52 253 | 152 259 | O
Parity-2 28 125 | 55 208 | + 27 7| .38 103 |0
Parity-3 31 94| 82 236 |+ 27 15| 61 213 | +
Parity-4 35 138 | 96 283 | + 25 31| .88 284 | +
Linear .02 41 .02 410 19 59| 19 550
Cosinus 27 334 | 41 364 | + 36 105 29 910
Auto-mpg A3 97 14 102 |0 21 271 21 1910
Auto-price 14 48| 12 53 |0 28 16| .17 1010
CPU 12 33| 15 470 42 16| 31 1010
Housing A7 129 | 15 177 | 0 31 33 23 2310
Servo 25 53| 28 55(|0 .24 7| .33 910

constant term in the leaves. The column labeled S presents
the significance of the differences between RReliefF and
MSE computed with paired t-test at 0.05 level of signifi-
cance. 0 indicates that the differences are not significant at
0.05 level, ’+” means that predictor with RReliefF is signif-
icantly better, and ’-* implies the significantly better score
by MSE.

In the linear mode (left side of Table 4) the predictor gen-
erated with RReliefF is on artificial data sets mostly sig-
nificantly better than the predictor generated with MSE.
On UCI databases the predictors are comparable, RReli-
efF being better on 3 data sets, and MSE on 2, but with
insignificant differences. The complexity of the models in-
duced by RReliefF is considerably smaller in most cases
on both artificial and UCI data sets which indicates that
RReliefF was more successful detecting the dependencies.
With RReliefF the strong dependencies were mostly de-
tected and expressed with the selection of the appropriate
attributes in the upper part of the tree; the remaining depen-
dencies were incorporated in the models used in the leaves
of the tree. MSE was blind for strong dependencies and
was splitting the examples solely to minimize their impu-
rity (mean squared error) which prevented it to success-
fully model weaker dependencies with linear formulas in
the leaves of the tree.

In the point mode RReliefF produces smaller and more
accurate trees on problems with strong dependencies

(FRACTION, MODULO-8 and PARITY), while on UCI
databases MSE was better on 3 data sets and RReliefF on
one data set, but the differences are not significant. MSE
produced less complex trees on LINEAR, COSINUS and
UCI datasets. The reason for this is similar to the opposite
effect observed in the linear mode. Since there are proba-
bly no strong dependencies in these domains the ability to
detect them did not bring any advantage to RReliefF. MSE
which minimizes the squared error was favored by the stop-
ping criterion (percentage of the standard deviation) and
the pruning procedure which both rely on the estimation
of the error. Similar effect was observed in classification
(Brodley, 1995; Lubinsky, 1995), namely it was empiri-
cally shown that the classification error is the most appro-
priate for selecting the splits near the leaves of the decision
tree. This effect is hidden in the linear mode where the
trees are smaller (but not less complex as can be seen from
Table 4) and the linear models in the leaves play the role of
minimizing the accuracy.

5 Conclusions

Our experiments show that RReliefF can discover strong
dependencies between attributes, while in domains with-
out such dependencies it performs the same as the mean
squared error. It is also robust and noise tolerant. Its in-
trinsic contextual nature allows it to recognize contextual



attributes. From our experimental results we can conclude
that learning regression trees with RReliefF is promising
especially in combination with linear models in the leaves
of the tree.

Both, RReliefF in regression and ReliefF in classification
(Kononenko, 1994) are estimators of (7), which gives a uni-
fied view on the estimation of the quality of attributes for
classification and regression. RReliefF’s good performance
and robustness indicate its appropriateness for feature se-
lection.

As further work we are planning to use RReliefF in detec-
tion of context switch in incremental learning, and to guide
the constructive induction process.
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