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Introduction

I Model selection is a fundamental component of best practice
in applications of kernel learning methods.

I Decomposition of the error of a model selection criterion

I Bias - how much the predictions depart from the true value on
average.

I Variance - the average squared distance of predictions from
their mean.

I Leave-one-out cross-validation

I Very efficient for many kernel machines.
I Low bias, but relatively high variance.

I Use Bayesian regularisation in model selection

I Prevent over-fitting of the model selection criteria.
I No more computationally expensive than before.



Least-Squares Support Vector Machine

I Data : D = {(xi , ti )} , xi ∈ X ⊂ Rd , ti ∈ {−1,+1}.
I Model : f (x) = w · φ(x) + b,

I Regularised least-squares loss function:

L =
1

2
‖w‖2 +

1

2µ`

∑̀
i=1

[ti −w · φ(xi )− b]2 .

I K(x, x′) = φ(x) ·φ(x′) =⇒ f (xi ) =
∑`

i=1 αiK(xi , x)+b.

I System of linear equations[
K + µ`I 1

1T 0

] [
α
b

]
=

[
t
0

]
.

I Can be solved efficiently via Cholesky factorisation.



Kernel Functions

I Kernel models rely on a good choice of kernel function.

I Radial Basis Function

K(x, x′) = exp
{
−η‖x− x′‖2

}
.

I RBF with feature scaling a.k.a. Automatic Relevance
Determination

K(x, x′) = exp

{
−

d∑
i=1

ηi (xi − x′i )
2

}
.

I Must optimise kernel parameters, η, as well as regularisation
parameter

I Model selection should provide a means of choosing the kernel
function as well.



Virtual Leave-One-Out Cross-Validation

I Can perform leave-one-out cross-validation in closed form.

I Let yi = f (xi ) and C =

[
K + µ`I 1

1T 0

]
.

I It can be shown that:

r
(−i)
i = ti − y

(−i)
i =

αi

C−1
ii

.

I Uses information available as a by-product of training.

I Perform model selection by minimising PRESS

Q(θ) =
1

`

∑̀
i=1

[
αi

C−1
ii

]2

where θ = {µ, η1, . . . , ηd} .

I Use conjugate gradient descent or Nelder-Mead simplex.



Regularisation in Model Selection

I Problem : The high variance of the PRESS criterion allows
over-fitting given sufficient degrees of Freedom.

I Solution : Add a regularisation term to the PRESS criterion

M(θ) = ζQ(θ) + ξΩ(θ) where Ω(θ) =
1

2

d∑
i=1

η2
i .

I Ω(θ) is intended to discourage hyper-parameter values giving
rise to complex models.

I Only kernel parameters are currently regularised.

I Corresponds to the use of a hyper-prior in Bayesian methods

I Has been used in Gaussian Process Classifiers (GPC).

I Problem : we now have two hyper-hyper-parameters to set :-(



Eliminating the Regularisation Parameters

I Let Q(θ) and Ω(θ) represent the negative logarithms of the
likelihood and prior,

p(D|θ) =
1

ZQ
exp {−ζQ(θ)} and p(θ) =

1

ZΩ
exp {−ξΩ(θ)}

where ZQ = (2π/ζ)`/2 and ZΩ = (2π/ξ)d/2.

I M(θ) is then the negative logarithm of the posterior

p(θ|D) ∝ p(D|θ)p(θ)

I We aim to integrate out ξ using a suitable hyper-prior

p(θ) =

∫
p(θ|ξ)p(ξ)dξ

c.f. Buntine and Weigend (1991).



Eliminating the Regularisation Parameters

I Using the Jeffrey’s prior p(ξ) ∝ 1/ξ, and noting ξ is strictly
positive

p(θ) =
1

(2π)d/2

∫ ∞

0
ξd/2−1 exp{−ξΩ(θ)dξ}

I Using the Gamma integral
∫∞
0 xν−1eµxdx = Γ(ν)/µν ,

p(θ) =
1

(2π)d/2

Γ(d/2)

Ωd/2
=⇒ − log p(θ) ∝ d

2
log Ω(θ)

I Adopting the same approach to Q(θ),

L =
`

2
log Q(θ) +

d

2
log Ω(θ).

I Regularisation parameters have been integrated out.



Relationship with The Evidence Framework

I Maximise the marginal likelihood w.r.t. ζ and ξ.

I Efficient update formulae:

ξ =
γ

2Ω(θ)
and ζ =

`− γ

2Q(θ)
, where γ =

n∑
j=1

λj

λj + ξ

λ1, . . . , λd represent the eigenvalues of the Hessian of L with
respect to the kernel parameters.

I From a gradient descent perspective, minimising L ≡
minimising M, subject to

ξeff =
d

2Ω(θ)
and ζeff =

`

2Q(θ)
.

I Mildly over-regularised relative to the Evidence framework.

I No need to compute the Hessian.



What have we achieved so far?

I We have regularised the model selection criterion without
introducing hyper-hyper-parameters to select.

I Simple to optimise using e.g. scaled conjugate gradients.
I Implementation only slightly more complcated.
I No more computationally expensive than PRESS.

I Not as elegant as the fully Bayesian approach.

I Cross-validation may be more robust.
I Fewer modelling assumptions.

I Integrate-out approach likely to result in mild under-fitting

I Model should be less sensitive to assumptions at higher levels
of the hierarchy.

I Pragmatic combination of approaches

I But does it actually work?



Empirical Evaluation

I Use multiple benchmark datasets.

I See how classifier performs in different situations.

I Use multiple realisations of the datasets.

I Allow estimation of statistical significance.

I Compare performance with a state-of-the-art method.

I Expectation Propagation based Gaussian Process classifier.
I Choose hyper-parameters to maximise the marginal likelihood.

I Use Gunnar Rätsch’s suite of thirteen benchmarks.

I Must perform model selection separately in each trial.

I More representative of actual practice.
I Standard error reflects variance of model selection criterion.
I Avoids selection bias (don’t average hyper-parameters over the

first 5 replicates!!!).



Benchmark Datasets

Dataset
Training Testing Number of Input
Patterns Patterns Replications Features

Banana 400 4900 100 2
Breast cancer 200 77 100 9
Diabetis 468 300 100 8
Flare solar 666 400 100 9
German 700 300 100 20
Heart 170 100 100 13
Image 1300 1010 20 18
Ringnorm 400 7000 100 20
Splice 1000 2175 20 60
Thyroid 140 75 100 5
Titanic 150 2051 100 3
Twonorm 400 7000 100 20
Waveform 400 4600 100 21



Results on Benchmark Datasets

Dataset
Radial Basis Function

LSSVM LS-SVM-BR EP-GPC

Banana 10.60 ± 0.052 10.59 ± 0.050 10.41 ± 0.046

Breast cancer 26.73 ± 0.466 27.08 ± 0.494 26.52 ± 0.489

Diabetes 23.34 ± 0.166 23.14 ± 0.166 23.28 ± 0.182

Flare solar 34.22 ± 0.169 34.07 ± 0.171 34.20 ± 0.175

German 23.55 ± 0.216 23.59 ± 0.216 23.36 ± 0.211

Heart 16.64 ± 0.358 16.19 ± 0.348 16.65 ± 0.287

Image 3.00 ± 0.158 2.90 ± 0.154 2.80 ± 0.123

Ringnorm 1.61 ± 0.015 1.61 ± 0.015 4.41 ± 0.064

Splice 10.97 ± 0.158 10.91 ± 0.154 11.61 ± 0.181

Thyroid 4.68 ± 0.232 4.63 ± 0.218 4.36 ± 0.217

Titanic 22.47 ± 0.085 22.59 ± 0.120 22.64 ± 0.134

Twonorm 2.84 ± 0.021 2.84 ± 0.021 3.06 ± 0.034

Waveform 9.79 ± 0.045 9.78 ± 0.044 10.10 ± 0.047



Statistical Significance

I Compute z-score, means, µ{a,b} and standard errors, σ{a,b},

z =
µa − µb√
σ2

a + σ2
b

z ≥ 1.64 corresponds to a 95% significance level.

I LS-SVM-BR versus LS-SVM

I Neither model significantly better on any benchmark.
I Too few degrees of freedom to significantly over-fit PRESS.

I LS-SVM-BR versus EP-GPC

I Significantly better (4) : ringnorm, splice, twonorm,
waveform.

I Significantly worse (1) : banana.
I Cross-validation may be more robust (fewer assumptions).



Results on Benchmark Datasets

Dataset
Automatic Relevance Determination

LSSVM LS-SVM-BR EP-GPC

Banana 10.79 ± 0.072 10.73 ± 0.070 10.46 ± 0.049

Breast cancer 29.08 ± 0.415 27.81 ± 0.432 27.97 ± 0.493

Diabetes 24.35 ± 0.194 23.42 ± 0.177 23.86 ± 0.193

Flare solar 34.39 ± 0.194 33.61 ± 0.151 33.58 ± 0.182

German 26.10 ± 0.261 23.88 ± 0.217 23.77 ± 0.221

Heart 23.65 ± 0.355 17.68 ± 0.623 19.68 ± 0.366

Image 1.96 ± 0.115 2.00 ± 0.113 2.16 ± 0.068

Ringnorm 2.11 ± 0.040 1.98 ± 0.026 8.58 ± 0.096

Splice 5.86 ± 0.179 5.14 ± 0.145 7.07 ± 0.765

Thyroid 4.68 ± 0.199 4.71 ± 0.214 4.24 ± 0.218

Titanic 22.58 ± 0.108 22.86 ± 0.199 22.73 ± 0.134

Twonorm 5.18 ± 0.072 4.53 ± 0.077 4.02 ± 0.068

Waveform 13.56 ± 0.141 11.48 ± 0.177 11.34 ± 0.195



Automatic Relevance Determination

I The ARD kernel often degrades predictive performance.

I LS-SVM:

I Significantly better (2) : image, splice.
I Significantly worse (8) : banana, breast cancer, diabetis,

german, heart, ringnorm, twonorm, waveform.

I LS-SVM-BR:

I Significantly better (3) : flare solar, image, splice
I Significantly worse (4) : heart, ringnorm, twonorm,

waveform.

I EP-GPC:

I Significantly better (3) : flare solar, image, splice.
I Significantly worse (6) : breast cancer, diabetis, heart,

ringnorm, twonorm, waveform.

I Use ARD if identifying informative inputs is itself of interest.



Automatic Relevance Determination

I Many degrees of freedom makes it easier to over-fit the
PRESS criterion.

I Bayesian regularisation is highly effective in this case.

I LS-SVM-BR versus LS-SVM:

I Significantly better (9) : breast cancer, diabetis, flare
solar, german, heart, ringnorm, splice, twonorm,
waveform.

I Significantly worse (0) : none.

I LS-SVM-BR versus EP-GPC:

I Significantly better (4) : diabetis, heart, ringnorm,
splice.

I Significantly worse (2) : banana, twonorm.

I Performance of LS-SVM-BR is comparable (slightly better?)
with EP-GPC.



Summary

I Virtual leave-one-out provides an efficient means for model
selection for a variety of kernel learning methods.

I High variance gives possibility of over-fitting.
I Bayesian regularisation effective solution.

I Combination of strategies

I Cross-validation potentially more robust.
I Bayesian approach is good for handling nuisance parameters.
I Model should be less sensitive to choices made at higher levels

in the hierarchy.

I Pragmatic rather than principled

I Not as elegant as the fully Bayesian approach.
I Very easily implemented - minimal computational cost.

I Performance comparable with Gaussian Process methods.


