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How to set the tax rate?
Government wants to set 

tax rate to maximize 
revenue.
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How to set the tax rate?
Business wants 

maximize profit for 
given tax rate.
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Assumptions – Stackelberg Game (1952)

Government

Business

Leader

Follower

t x

Rational: will optimize f(t,x)



System Control Problem

Controller

Machine

Leader

Follower

t xControl Variables State Variables



Tax Policy as Bilevel Program
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Two levels of optimization:  
constraints are themselves mathematical programs.



Tax Policy with regulation
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Lower level constraints can depend on t too



General Bilevel Program
Bracken and McGill 1973,   Bard 1999
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Machine Learning Example
Given

Training Set
Testing Set
Linear Support Vector Regression Problem
with parameters c,ε

Determine c,ε such that generalization as 
measured by the test set is optimized



Grid Search  Approach
Define grid over

Optimize model on 
train for each

Select value of 
that yields 

best testing set error
C

ε
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Train/Test as Bilevel

Testing Set Error

Training Set Error

Leader  

Follower

,c ε w

W must be optimal for SVR 
for given ,c ε



Bilevel Model
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Leader:  optimize mean absolute testing error 
by controling c,ε

Follower:  optimizes w using SVR on training 
data



Train/Test Linear Bilevel Model
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2-Level  LP
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d Leader would like 
this feasible solution 
to be the outcome.

But then follower
would respond with 
this x.



Reaction Set

x

t S c

d The leader can 
examine reaction of 
follower for each 
feasible choice of t.

This forms the 
reaction set S(t).



Optimal Solution
Equivalent problem

S(t) nonconvex, 
nonsmooth
S(t) may not be 
connected.
Even LP case is 
NP-Hard
Optimality conditions 
difficult to define
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KKT Optimality Conditions of 
Inner Problem
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If convex problem and (x*,y*,λ*) is KKT point,
then x*,y* is globally optimal.
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KKT Optimality Conditions of Inner 
Problem
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Bilevel Optimality Conditions
CQ usually not satisfied.
Frequently no KKT points.
Non-smoothness is the problem.
Problem is inherently 
combinatorial.



Key Transformation
KKT for the inner level training problems 
are necessary and sufficient
Replace lower level problems by their 
KKT Conditions
Problem becomes a Mathematical 
Programming Problem with Equilibrium 
Constraints (MPEC)



Bilevel Program as MPEC
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Combinatorial Global Search
For each of m equilibrium constraints

Find global solutions by trying 2m possibilities.
For LPs and convex QPs, subproblems are LPs.
Use Integer Programming/Global Optimization 
techniques to dramatically improve efficiency.
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Alternatively Relax MPEC to NLP
Relax “hard” equilibrium constraints

to “soft” inexact constraints

tol is some user-defined tolerance. 
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Relaxed Bilevel Program as NLP

Nonconvex but nicer.  Has KKT points.
SQP algorithms such as Filter work well.
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Bilevel T-fold Cross-Validation

ΣtTest Error Ωt

Train ErrorΩ\ΩT

Leader

T Followers

,c ε
tw

Train ErrorΩ\Ω1



Bilevel Program for T folds

Prior Approaches:  Golub et al., 1979, 
Generalized Cross-Validation for one parameter in
Ridge Regression

CV as Bilevel Optimization (Bennett et al 2006)
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Benefit: More Design Variables

Add feature box constraint:                          in the 
inner-level problems.
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Inner-level Problem for t-th Fold
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Inner problem optimality conditions 
for fixed , ,C ε w
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Bilevel Problem as MPEC
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Relaxed Bilevel CV as NLP

, , , 1

, t

, t

, ,

, t

, t

1min  

 s.t.        for 1,...,

0 + + 0
 0 + + 0    
0 0

0  0
             

0 0

 

t

t

T
t

i i
C t it

t t
j tol j j j
t t

j tol j j j t
t t t
j tol j j

t
tol

t
tol

y
T

t T

y
y j

C

ε

α ε ξ
α ε ξ
ξ α α

= ∈Ω

+

−

+ −

+

−

1 ′ −
Ω

=

′ ⎫≤ ⊥ − ≥
⎪′≤ ⊥ − ≥ ∀ ∈Ω⎬
⎪≤ ⊥ − − ≥ ⎭

≤ ⊥ − ≥
≤ ⊥ + ≥

∑ ∑
w w

x w

x w
x w

γ w w
γ w w

( )t , , , ,

j

            0 =
t

t t t t
j j jα α+ − + −

∈Ω

+ −  + −∑w x γ γ

Replace T inner-level problems with 
corresponding optimality conditions



Computational Experiments: DATA
Synthetic

(5,10,15)-D Data with Gaussian and Laplacian
noise and (3,7,10) relevant features.   
NLP:  3-fold CV
Results:  30 to 90 train, 1000 test points,  10 trials

QSAR/Drug Design
4 datasets,  600+ dimensions reduced to 25 top 

principal components.    NLP:  5-fold CV    
Results:  40 – 100 train, rest test,   20 trials



Cross-validation Methods Compared
Unconstrained Grid:
Try 3 values each for C,ε
Constrained Grid:
Try 3 values each for C, ε, and 
{0, 1} for each component of

Bilevel/FILTER:  Nonlinear program 
solved using off-the-shelf SQP algorithm, 
FILTER via NEOS

w



15-D Data: Objective Value 

0

0.5

1

1.5

2

2.5

3

15 pts 30 pts 60 pts 90 pts

Unc Grid
Con Grid
Filter



15-D Data: Computational Time 
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15-D Data: TEST MAD 
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QSAR Data: Objective Value 
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QSAR Data: Computation Time 
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QSAR Data: TEST MAD 
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Machine Learning 
as Bilevel Programming

New capacity offers new possibilities:
Outer level objectives?
Inner level problem?

classification, ranking, semi-supervised, 
missing values, kernel selection, variable selection, …

Special purpose algorithms being developed for 
greater efficiency, scalability, robustness

This work was supported by Office of Naval Research Grant N00014-06-1-0014.  
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